Welcome to dcbenchο
π‘ What is dcbench?ο
This benchmark evaluates the steps in your machine learning workflow beyond model training and tuning. This includes feature cleaning, slice discovery, and coreset selection. We call these βdata-centricβ tasks because theyβre focused on exploring and manipulating data β not training models. dcbench
supports a growing number of them:
Minimal Data Selection: Find the smallest subset of training data on which a fixed model architecture achieves accuracy above a threshold.
Slice Discovery: Identify subgroups on which a model underperforms.
Data Cleaning on a Budget: Given a fixed budget, clean input features of training data to improve model performance.
dcbench
includes tasks that look very different from one another: the inputs and
outputs of the slice discovery task are not the same as those of the
minimal data cleaning task. However, we think it important that
researchers and practitioners be able to run evaluations on data-centric
tasks across the ML lifecycle without having to learn a bunch of
different APIs or rewrite evaluation scripts.
So, dcbench
is designed to be a common home for these diverse, but
related, tasks. In dcbench
all of these tasks are structured in a
similar manner and they are supported by a common Python API that makes
it easy to download data, run evaluations, and compare methods.
π§ API Walkthroughο
pip install dcbench
Task
ο
dcbench
supports a diverse set of data-centric tasks (e.g. Slice Discovery).
You can explore the supported tasks in the documentation (π― Tasks) or via the Python API:
In [1]: import dcbench
In [2]: dcbench.tasks
Out[2]:
name summary
minidata Minimal Data Selection Given a large training dataset, what is the sm...
slice_discovery Slice Discovery Machine learnings models that achieve high ove...
budgetclean Data Cleaning on a Budget When it comes to data preparation, data cleani...
In the dcbench
API, each task is represented by a dcbench.Task
object that can be accessed by task_id (e.g. dcbench.slice_discovery
). These task objects hold metadata about the task and hold pointers to task-specific dcbench.Problem
and dcbench.Solution
subclasses, discussed below.
Problem
ο
Each task features a collection of problems (i.e. instances of the task). For example, the Slice Discovery task includes hundreds of problems across a number of different datasets. We can explore a taskβs problems in dcbench
:
In [3]: dcbench.tasks["slice_discovery"].problems
Out[3]:
alpha ... target_name
p_72776 0.2000 ... wearing_lipstick
p_72793 0.6000 ... wearing_necklace
p_72800 0.2000 ... wearing_necklace
p_72799 0.6000 ... wearing_necklace
p_72802 0.2000 ... wearing_necklace
... ... ... ...
p_121367 0.4000 ... vehicle.n.01
p_121364 0.4000 ... vehicle.n.01
p_118660 0.0171 ... food.n.01
p_117634 0.0171 ... vehicle.n.01
p_117980 0.0171 ... vehicle.n.01
[1023 rows x 6 columns]
All of a taskβs problems share the same structure and use the same evaluation scripts.
This is specified via task-specific subclasses of dcbench.Problem
(e.g. SliceDiscoveryProblem
). The problems themselves are instances of these subclasses. We can access a problem using itβs id:
In [4]: problem = dcbench.tasks["slice_discovery"].problems["p_118919"]
In [5]: problem
Out[5]: SliceDiscoveryProblem(artifacts={'activations': 'DataPanelArtifact', 'base_dataset': 'VisionDatasetArtifact', 'clip': 'DataPanelArtifact', 'model': 'ModelArtifact', 'test_predictions': 'DataPanelArtifact', 'test_slices': 'DataPanelArtifact', 'val_predictions': 'DataPanelArtifact'}, attributes={'alpha': 0.01709975946676697, 'dataset': 'imagenet', 'n_pred_slices': 5, 'slice_category': 'rare', 'slice_names': ['hay.n.01'], 'target_name': 'food.n.01'})
Artifact
ο
Each problem is made up of a set of artifacts: a dataset with features to clean, a dataset and a model to perform error analysis on. In dcbench
, these artifacts are represented by instances of
dcbench.Artifact
. We can think of each Problem
object as a container for Artifact
objects.
In [6]: problem.artifacts
Out[6]:
{'activations': <dcbench.common.artifact.DataPanelArtifact at 0x7f9feb704b90>,
'base_dataset': <dcbench.common.artifact.VisionDatasetArtifact at 0x7f9feb704850>,
'clip': <dcbench.common.artifact.DataPanelArtifact at 0x7f9feb704890>,
'model': <dcbench.common.artifact.ModelArtifact at 0x7f9feb704c10>,
'test_predictions': <dcbench.common.artifact.DataPanelArtifact at 0x7f9feb704c50>,
'test_slices': <dcbench.common.artifact.DataPanelArtifact at 0x7f9feb704c90>,
'val_predictions': <dcbench.common.artifact.DataPanelArtifact at 0x7f9feb704cd0>}
Note that Artifact
objects donβt actually hold their underlying data in memory. Instead, they hold pointers to where the Artifact
lives in dcbench
cloud storage and, if itβs been downloaded, where it lives locally on disk. This makes the Problem
objects very lightweight.
dcbench
includes loading functionality for each artifact type. To load an artifact into memory we can use load()
. Note that this will also download the artifact to disk if it hasnβt yet been downloaded.
In [7]: problem.artifacts["model"]
Out[7]: <dcbench.common.artifact.ModelArtifact at 0x7f9feb704c10>
Easier yet, we can use the index operator directly on Problem
objects to both fetch the artifact and load it into memory.
In [8]: problem["activations"] # shorthand for problem.artifacts["model"].load()
Out[8]: DataPanel(nrows: 9044, ncols: 2)
Downloading to Disk
By default, dcbench
downloads artifacts to ~/.dcbench
but this can be configured by creating a dcbench-config.yaml
as described in βοΈ Configuring dcbench. To download an Artifact
via the Python API, use Artifact.download()
. You can also download all the artifacts in a problem with Problem.download()
.
Solution
ο
π― Tasksο
Minimal Data Selectionο
Given a large training dataset, what is the smallest subset you can sample that still achieves some threshold of performance.
Classes: dcbench.MiniDataProblem
dcbench.MiniDataSolution
Cloud Storage
We recommend downloading Artifacts through the Python API, but you can also explore the Artifacts on the Google Cloud Console.
Problem Artifactsο
name |
type |
description |
---|---|---|
|
A DataPanel of train examples with columns |
|
|
A DataPanel of validation examples with columns |
|
|
A DataPanel of test examples with columns |
Solution Artifactsο
name |
type |
description |
---|---|---|
|
A list of train example ids from the |
Slice Discoveryο
Machine learnings models that achieve high overall accuracy often make systematic erors on important subgroups (or slices) of data. When working with high-dimensional inputs (e.g. images, audio) where data slices are often unlabeled, identifying underperforming slices is challenging. In this task, weβll develop automated slice discovery methods that mine unstructured data for underperforming slices.
Classes: dcbench.SliceDiscoveryProblem
dcbench.SliceDiscoverySolution
Cloud Storage
We recommend downloading Artifacts through the Python API, but you can also explore the Artifacts on the Google Cloud Console.
Problem Artifactsο
name |
type |
description |
---|---|---|
|
A DataPanel of the modelβs predictions with columns id,`target`, and probs. |
|
|
A DataPanel of the modelβs predictions with columns id,`target`, and probs. |
|
|
A DataPanel of the ground truth slice labels with columns id, slices. |
|
|
A DataPanel of the modelβs activations with columns id,`act` |
|
|
A trained PyTorch model to audit. |
|
|
A DataPanel representing the base dataset with columns id and image. |
|
|
A DataPanel of the image embeddings from OpenAIβs CLIP model |
Solution Artifactsο
name |
type |
description |
---|---|---|
|
A DataPanel of predicted slice labels with columns id and pred_slices. |
Data Cleaning on a Budgetο
When it comes to data preparation, data cleaning is an essential yet quite costly task. If we are given a fixed cleaning budget, the challenge is to find the training data examples that would would bring the biggest positive impact on model performance if we were to clean them.
Classes: dcbench.BudgetcleanProblem
dcbench.BudgetcleanSolution
Cloud Storage
We recommend downloading Artifacts through the Python API, but you can also explore the Artifacts on the Google Cloud Console.
Problem Artifactsο
name |
type |
description |
---|---|---|
|
(βFeatures of the dirty training dataset which we need to clean. Each dirty cell contains an embedded list of clean candidate values.β,) |
|
|
Features of the clean training dataset where each dirty value from the dirty dataset is replaced with the correct clean candidate. |
|
|
Labels of the training dataset. |
|
|
Feature of the validtion dataset which can be used to guide the cleaning optimization process. |
|
|
Labels of the validation dataset. |
|
|
(βFeatures of the test dataset used to produce the final evaluation score of the model.β,) |
|
|
Labels of the test dataset. |
Solution Artifactsο
name |
type |
description |
---|---|---|
|
π Installing dcbenchο
This section describes how to install the dcbench
Python package.
pip install dcbench
Optional
Some parts of dcbench
rely on optional dependencies. If you know which optional dependencies youβd like to install, you can do so using something like pip install dcbench[dev]
instead. See setup.py
for a full list of optional dependencies.
Installing from branchο
To install from a specific branch use the command below, replacing main
with the name of any branch in the dcbench repository.
pip install "dcbench @ git+https://github.com/data-centric-ai/dcbench@main"
Installing from cloneο
You can install from a clone of the dcbench
repo with:
git clone https://github.com/data-centric-ai/dcbench.git
cd dcbench
pip install -e .
βοΈ Configuring dcbenchο
Several aspects of dcbench
behavior can be configured by the user.
For example, one may wish to change the directory in which dcbench
downloads artifacts (by default this is ~/.dcbench
).
You can see the current state of the dcbench
configuration with:
In [1]: import dcbench
In [2]: dcbench.config
Out[2]: DCBenchConfig(local_dir='/home/docs/.dcbench', public_bucket_name='dcbench', hidden_bucket_name='dcbench-hidden', celeba_dir='/home/docs/.dcbench/datasets/celeba', imagenet_dir='/home/docs/.dcbench/datasets/imagenet')
Configuring with YAMLο
To change the configuration create a YAML file, like the one below:
Then set the environment variable DCBENCH_CONFIG
to point to the file:
export DCBENCH_CONFIG="/path/to/dcbench-config.yaml"
If youβre using a conda, you can permanently set this variable for your environment:
conda env config vars set DCBENCH_CONFIG="path/to/dcbench-config.yaml"
conda activate env_name # need to reactivate the environment
Configuring Programmaticallyο
You can also update the config programmatically, though unlike the YAML method above, these changes will not persist beyond the lifetime of your program.
dcbench.config.local_dir = "/path/to/storage"
dcbench.config.public_bucket_name = "dcbench-test"
dcbench packageο
Subpackagesο
dcbench.common packageο
Submodulesο
dcbench.common.artifact moduleο
- class Artifact(artifact_id, **kwargs)[source]ο
Bases:
abc.ABC
A pointer to a unit of data (e.g. a CSV file) that is stored locally on disk and/or in a remote GCS bucket.
In DCBench, each artifact is identified by a unique artifact ID. The only state that the
Artifact
object must maintain is this ID (self.id
). The object does not hold the actual data in memory, making it lightweight.Artifact
is an abstract base class. Different types of artifacts (e.g. a CSV file vs. a PyTorch model) have corresponding subclasses ofArtifact
(e.g.CSVArtifact
,ModelArtifact
).Tip
The vast majority of users should not call the
Artifact
constructor directly. Instead, they should either create a new artifact by callingfrom_data()
or load an existing artifact from a YAML file.The class provides utilities for accessing and managing a unit of data:
Synchronizing the local and remote copies of a unit of data:
upload()
,download()
Loading the data into memory:
load()
Creating new artifacts from in-memory data:
from_data()
Serializing the pointer artifact so it can be shared:
to_yaml()
,from_yaml()
- Parameters
artifact_id (str) β The unique artifact ID.
- Return type
None
- idο
The unique artifact ID.
- Type
str
- classmethod from_data(data, artifact_id=None)[source]ο
Create a new artifact object from raw data and save the artifact to disk in the local directory specified in the config file at
config.local_dir
.Tip
When called on the abstract base class
Artifact
, this method will infer which artifact subclass to use. If you know exactly which artifact class youβd like to use (e.g.DataPanelArtifact
), you should call this classmethod on that subclass.- Parameters
data (Union[mk.DataPanel, pd.DataFrame, Model]) β The raw data that will be saved to disk.
artifact_id (str, optional) β . Defaults to None, in which case a UUID will be generated and used.
- Returns
A new artifact pointing to the :arg:`data` that was saved to disk.
- Return type
- property local_path: strο
The local path to the artifact in the local directory specified in the config file at
config.local_dir
.
- property remote_url: strο
The URL of the artifact in the remote GCS bucket specified in the config file at
config.public_bucket_name
.
- property is_downloaded: boolο
Checks if artifact is downloaded to local directory specified in the config file at
config.local_dir
.- Returns
True if artifact is downloaded, False otherwise.
- Return type
bool
- property is_uploaded: boolο
Checks if artifact is uploaded to GCS bucket specified in the config file at
config.public_bucket_name
.- Returns
True if artifact is uploaded, False otherwise.
- Return type
bool
- upload(force=False, bucket=None)[source]ο
Uploads artifact to a GCS bucket at
self.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force upload even if artifact is already uploaded. Defaults to False.
bucket (storage.Bucket, optional) β The GCS bucket to which the artifact is uplioaded. Defaults to None, in which case the artifact is uploaded to the bucket speciried in the config file at config.public_bucket_name.
- Return type
bool
- Returns
bool: True if artifact was uploaded, False otherwise.
- download(force=False)[source]ο
Downloads artifact from GCS bucket to the local directory specified in the config file at
config.local_dir
. The relative path to the artifact within that directory isself.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force download even if artifact is already downloaded. Defaults to False.
- Returns
True if artifact was downloaded, False otherwise.
- Return type
bool
Warning
By default, the GCS cache on public urls has a max-age up to an hour. Therefore, when updating an existin artifacts, changes may not be immediately reflected in subsequent downloads.
See here for more details.
- DEFAULT_EXT: str = ''ο
- isdir: bool = Falseο
- abstract load()[source]ο
Load the artifact into memory from disk at
self.local_path
.- Return type
Any
- abstract save(data)[source]ο
Save data to disk at
self.local_path
.- Parameters
data (Any) β
- Return type
None
- static from_yaml(loader, node)[source]ο
This function is called by the YAML loader to convert a YAML node into an Artifact object.
It should not be called directly.
- Parameters
loader (yaml.loader.Loader) β
- static to_yaml(dumper, data)[source]ο
This function is called by the YAML dumper to convert an Artifact object into a YAML node.
It should not be called directly.
- Parameters
dumper (yaml.dumper.Dumper) β
data (dcbench.common.artifact.Artifact) β
- class CSVArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'csv'ο
- class YAMLArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'yaml'ο
- class DataPanelArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'mk'ο
- isdir: bool = Trueο
- class VisionDatasetArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.DataPanelArtifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'mk'ο
- isdir: bool = Trueο
- COLUMN_SUBSETS = {'celeba': ['id', 'image', 'identity', 'split'], 'imagenet': ['id', 'image', 'name', 'synset']}ο
- download(force=False)[source]ο
Downloads artifact from GCS bucket to the local directory specified in the config file at
config.local_dir
. The relative path to the artifact within that directory isself.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force download even if artifact is already downloaded. Defaults to False.
- Returns
True if artifact was downloaded, False otherwise.
- Return type
bool
Warning
By default, the GCS cache on public urls has a max-age up to an hour. Therefore, when updating an existin artifacts, changes may not be immediately reflected in subsequent downloads.
See here for more details.
- class ModelArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'pt'ο
- save(data)[source]ο
Save data to disk at
self.local_path
.- Parameters
data (dcbench.common.modeling.Model) β
- Return type
None
dcbench.common.artifact_container moduleο
- class ArtifactSpec(description: 'str', artifact_type: 'type', optional: 'bool' = False)[source]ο
Bases:
object
- Parameters
description (str) β
artifact_type (type) β
optional (bool) β
- Return type
None
- description: strο
- artifact_type: typeο
- optional: bool = Falseο
- class ArtifactContainer(artifacts, attributes=None, container_id=None)[source]ο
Bases:
abc.ABC
,collections.abc.Mapping
,dcbench.common.table.RowMixin
A logical collection of artifacts and attributes (simple tags describing the container), which are useful for finding, sorting and grouping containers.
- Parameters
artifacts (Mapping[str, Union[Artifact, Any]]) β A mapping with the same keys as the ArtifactContainer.artifact_specs (possibly excluding optional artifacts). Each value can either be an
Artifact
, in which case the artifact type must match the type specified in the correspondingArtifactSpec
, or a raw object, in which case a new artifact of the type specified in artifact_specs is created from the raw object and anartifact_id
is generated according to the following pattern:<task_id>/<container_type>/artifacts/<container_id>/<key>
.attributes (Mapping[str, PRIMITIVE_TYPE], optional) β A mapping with the same keys as the ArtifactContainer.attribute_specs (possibly excluding optional attributes). Each value must be of the type specified in the corresponding
AttributeSpec
. Defaults to None.container_id (str, optional) β The ID of the container. Defaults to None, in which case a UUID is generated.
- artifactsο
A dictionary of artifacts, indexed by name.
Tip
We can use the index operator directly on
ArtifactContainer
objects to both fetch the artifact, download it if necessary, and load it into memory. For example, to load the artifact"data"
into memory from a containercontainer
, we can simply callcontainer["data"]
, which is equivalent to callingcontainer.artifacts["data"].download()
followed bycontainer.artifacts["data"].load()
.- Type
Dict[str, Artifact]
- attributesο
A dictionary of attributes, indexed by name.
Tip
Accessing attributes Atttributes can be accessed via a dot-notation (as long as the attribute name does not conflict). For example, to access the attribute
"data"
in a containercontainer
, we can simply callcontainer.data
.- Type
Dict[str, Attribute]
Notes
ArtifactContainer
is an abstract base class, and should not be instantiated directly. There are two main groups ofArtifactContainer
subclasses:dcbench.Problem
- A logical collection of artifacts and attributes that correspond to a specific problem to be solved.Example subclasses:
dcbench.SliceDiscoveryProblem
,dcbench.BudgetcleanProblem
dcbench.Solution
- A logical collection of artifacts and attributes that correspond to a solution to a problem.Example subclasses:
dcbench.SliceDiscoverySolution
,dcbench.BudgetcleanSolution
A concrete (i.e. non-abstract) subclass of
ArtifactContainer
must include (1) a specification for the artifacts it holds, (2) a specification for the attributes used to tag it, and (3) a task_id linking the subclass to one of dcbenchβs tasks (see Task). For example, in the code block below we include such a specification in the definition of a simple container that holds a training dataset and a test dataset (seedcbench.SliceDiscoveryProblem
for a real example):class DemoContainer(ArtifactContainer): artifact_specs = { "train_dataset": ArtifactSpec( artifact_type=CSVArtifact, description="A CSV containing training data." ), "test_dataset": ArtifactSpec( artifact_type=CSVArtifact, description="A CSV containing test data." ), } attribute_specs = { "dataset_name": AttributeSpec( attribute_type=str, description="The name of the dataset." ), } task_id = "slice_discovery"
- artifact_specs: Mapping[str, ArtifactSpec]ο
- task_id: strο
- attribute_specs: Mapping[str, AttributeSpec] = {}ο
- container_type: str = 'artifact_container'ο
- property is_downloaded: boolο
Checks if all of the artifacts in the container are downloaded to the local directory specified in the config file at
config.local_dir
.- Returns
True if artifact is downloaded, False otherwise.
- Return type
bool
- property is_uploaded: boolο
Checks if all of the artifacts in the container are uploaded to the GCS bucket specified in the config file at
config.public_bucket_name
.- Returns
True if artifact is uploaded, False otherwise.
- Return type
bool
- upload(force=False, bucket=None)[source]ο
Uploads all of the artifacts in the container to a GCS bucket, skipping artifacts that are already uploaded.
- Parameters
force (bool, optional) β Force upload even if an artifact is already uploaded. Defaults to False.
bucket (storage.Bucket, optional) β The GCS bucket to which the artifacts are uploaded. Defaults to None, in which case the artifact is uploaded to the bucket speciried in the config file at config.public_bucket_name.
- Returns
True if any artifacts were uploaded, False otherwise.
- Return type
bool
- download(force=False)[source]ο
Downloads artifacts in the container from the GCS bucket specified in the config file at
config.public_bucket_name
to the local directory specified in the config file atconfig.local_dir
. The relative path to the artifact within that directory isself.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force download even if an artifact is already downloaded. Defaults to False.
- Returns
True if any artifacts were downloaded, False otherwise.
- Return type
bool
- static from_yaml(loader, node)[source]ο
This function is called by the YAML loader to convert a YAML node into an
ArtifactContainer
object.It should not be called directly.
- Parameters
loader (yaml.loader.Loader) β
- static to_yaml(dumper, data)[source]ο
This function is called by the YAML dumper to convert an
ArtifactContainer
object into a YAML node.It should not be called directly.
- Parameters
dumper (yaml.dumper.Dumper) β
data (dcbench.common.artifact_container.ArtifactContainer) β
dcbench.common.method moduleο
dcbench.common.modeling moduleο
- class Model(config=None)[source]ο
Bases:
pytorch_lightning.core.lightning.LightningModule
- Parameters
config (dict) β
- DEFAULT_CONFIG = {}ο
- training: boolο
- class ResNet(num_classes, arch='resnet18', dropout=0.0, pretrained=True)[source]ο
Bases:
torchvision.models.resnet.ResNet
- Parameters
num_classes (int) β
arch (str) β
dropout (float) β
pretrained (bool) β
- ACTIVATION_DIMS = [64, 128, 256, 512]ο
- ACTIVATION_WIDTH_HEIGHT = [64, 32, 16, 8]ο
- RESNET_TO_ARCH = {'resnet18': [2, 2, 2, 2], 'resnet50': [3, 4, 6, 3]}ο
- training: boolο
- class DenseNet(num_classes, arch='densenet121', pretrained=True)[source]ο
Bases:
torchvision.models.densenet.DenseNet
- Parameters
num_classes (int) β
arch (str) β
pretrained (bool) β
- DENSENET_TO_ARCH = {'densenet121': {'block_config': (6, 12, 24, 16), 'growth_rate': 32, 'num_init_features': 64}}ο
- training: boolο
- class VisionClassifier(config=None)[source]ο
Bases:
dcbench.common.modeling.Model
- Parameters
config (dict) β
- DEFAULT_CONFIG = {'arch': 'resnet18', 'lr': 0.0001, 'model_name': 'resnet', 'num_classes': 2, 'pretrained': True, 'train_transform': <function default_train_transform>, 'transform': <function default_transform>}ο
- forward(x)[source]ο
Same as
torch.nn.Module.forward()
.- Parameters
*args β Whatever you decide to pass into the forward method.
**kwargs β Keyword arguments are also possible.
- Returns
Your modelβs output
- training_step(batch, batch_idx)[source]ο
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, β¦) | [Tensor
, β¦]) β The output of yourDataLoader
. A tensor, tuple or list.batch_idx (
int
) β Integer displaying index of this batchoptimizer_idx (
int
) β When using multiple optimizers, this argument will also be present.hiddens (
Any
) β Passed in if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0.
- Returns
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch. This is only for automatic optimization.This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step youβd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder ... if optimizer_idx == 1: # do training_step with decoder ...
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step out, hiddens = self.lstm(data, hiddens) loss = ... return {"loss": loss, "hiddens": hiddens}
Note
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
- validation_step(batch, batch_idx)[source]ο
Operates on a single batch of data from the validation set. In this step youβd might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
batch β The output of your
DataLoader
.batch_idx β The index of this batch.
dataloader_idx β The index of the dataloader that produced this batch. (only if multiple val dataloaders used)
- Returns
Any object or value
None
- Validation will skip to the next batch
# pseudocode of order val_outs = [] for val_batch in val_data: out = validation_step(val_batch) if defined("validation_step_end"): out = validation_step_end(out) val_outs.append(out) val_outs = validation_epoch_end(val_outs)
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you donβt need to validate you donβt need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- validation_epoch_end(outputs)[source]ο
Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs β List of outputs you defined in
validation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Returns
None
- Return type
None
Note
If you didnβt define a
validation_step()
, this wonβt be called.Examples
With a single dataloader:
def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: ...
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log("final_metric", final_value)
- test_epoch_end(outputs)[source]ο
Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs β List of outputs you defined in
test_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
None
- Return type
None
Note
If you didnβt define a
test_step()
, this wonβt be called.Examples
With a single dataloader:
def test_epoch_end(self, outputs): # do something with the outputs of all test batches all_test_preds = test_step_outputs.predictions some_result = calc_all_results(all_test_preds) self.log(some_result)
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): final_value = 0 for dataloader_outputs in outputs: for test_step_out in dataloader_outputs: # do something final_value += test_step_out self.log("final_metric", final_value)
- test_step(batch, batch_idx)[source]ο
Operates on a single batch of data from the test set. In this step youβd normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
batch β The output of your
DataLoader
.batch_idx β The index of this batch.
dataloader_id β The index of the dataloader that produced this batch. (only if multiple test dataloaders used).
- Returns
Any of.
Any object or value
None
- Testing will skip to the next batch
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you donβt need to test you donβt need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- configure_optimizers()[source]ο
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally youβd need one. But in the case of GANs or similar you might have multiple.
- Returns
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.Tuple of dictionaries as described above, with an optional
"frequency"
key.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
The
frequency
value specified in a dict along with theoptimizer
key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:In the former case, all optimizers will operate on the given batch in each optimization step.
In the latter, only one optimizer will operate on the given batch at every step.
This is different from the
frequency
value specified in thelr_scheduler_config
mentioned above.def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {"optimizer": optimizer_one, "frequency": 5}, {"optimizer": optimizer_two, "frequency": 10}, ]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the
lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.Examples:
# most cases. no learning rate scheduler def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers # each optimizer has its own scheduler def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = { 'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step' # called after each training step } dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer and learning rate scheduler as needed.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.
- training: boolο
- trainer: Optional['pl.Trainer']ο
- precision: intο
- prepare_data_per_node: boolο
- allow_zero_length_dataloader_with_multiple_devices: boolο
dcbench.common.problem moduleο
- class Problem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.artifact_container.ArtifactContainer
A logical collection of :class:`Artifact`s and βattributesβ that correspond to a specific problem to be solved.
See the walkthrough section on Problem for more information.
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- container_type: str = 'problem'ο
- name: strο
- summary: strο
- task_id: strο
- solution_class: typeο
- artifact_specs: Mapping[str, ArtifactSpec]ο
dcbench.common.result moduleο
- class Result(id, attributes=None)[source]ο
Bases:
dcbench.common.table.RowMixin
- Parameters
id (str) β
attributes (Mapping[str, Union[int, float, str, bool]]) β
- attribute_specs: Mapping[str, dcbench.common.table.AttributeSpec]ο
dcbench.common.solution moduleο
- class Result(source)[source]ο
Bases:
Mapping
- class Solution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.artifact_container.ArtifactContainer
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- container_type: str = 'solution'ο
- artifact_specs: Mapping[str, ArtifactSpec]ο
- task_id: strο
dcbench.common.solve moduleο
dcbench.common.solver moduleο
dcbench.common.table moduleο
- class AttributeSpec(description: str, attribute_type: type, optional: bool = False)[source]ο
Bases:
object
- Parameters
description (str) β
attribute_type (type) β
optional (bool) β
- Return type
None
- description: strο
- attribute_type: typeο
- optional: bool = Falseο
- class RowMixin(id, attributes=None)[source]ο
Bases:
object
- Parameters
id (str) β
attributes (Mapping[str, Union[int, float, str, bool]]) β
- attribute_specs: Mapping[str, dcbench.common.table.AttributeSpec]ο
- property attributes: Optional[Mapping[str, Union[int, float, str, bool]]]ο
- class RowUnion(id, elements)[source]ο
Bases:
dcbench.common.table.RowMixin
- Parameters
id (str) β
elements (Sequence[dcbench.common.table.RowMixin]) β
- attribute_specs: Mapping[str, dcbench.common.table.AttributeSpec]ο
- predicate(a, b)[source]ο
- Parameters
a (Union[int, float, str, bool]) β
b (Union[int, float, str, bool, slice, Sequence[Union[int, float, str, bool]]]) β
- Return type
bool
- class Table(data)[source]ο
Bases:
Mapping
[str
,dcbench.common.table.RowMixin
]- property dfο
- where(**kwargs)[source]ο
- Parameters
kwargs (Union[int, float, str, bool, slice, Sequence[Union[int, float, str, bool]]]) β
- Return type
dcbench.common.task moduleο
- class Task(task_id, name, summary, problem_class, solution_class, baselines=Empty DataFrame Columns: [] Index: [])[source]ο
Bases:
dcbench.common.table.RowMixin
Task(task_id: str, name: str, summary: str, problem_class: type, solution_class: type, baselines: dcbench.common.table.Table = Empty DataFrame Columns: [] Index: [])
- Parameters
task_id (str) β
name (str) β
summary (str) β
problem_class (type) β
solution_class (type) β
baselines (dcbench.common.table.Table) β
- Return type
None
- task_id: strο
- name: strο
- summary: strο
- problem_class: typeο
- solution_class: typeο
- baselines: dcbench.common.table.Table = Empty DataFrame Columns: [] Index: []ο
- property problems_pathο
- property local_problems_pathο
- property remote_problems_urlο
- write_problems(containers, append=True)[source]ο
- Parameters
containers (List[dcbench.common.artifact_container.ArtifactContainer]) β
append (bool) β
- upload_problems(include_artifacts=False, force=True)[source]ο
Uploads the problems to the remote storage.
- Parameters
include_artifacts (bool) β If True, also uploads the artifacts of the problems.
force (bool) β
If True, if the problem overwrites the remote problems. Defaults to True. .. warning:
It is somewhat dangerous to set `force=False`, as this could lead to remote and local problems being out of sync.
- property problemsο
- attribute_specs: Mapping[str, AttributeSpec]ο
dcbench.common.trial moduleο
- class Trial(problems=None, solver=None)[source]ο
Bases:
dcbench.common.table.Table
dcbench.common.utils moduleο
Module contentsο
- class Artifact(artifact_id, **kwargs)[source]ο
Bases:
abc.ABC
A pointer to a unit of data (e.g. a CSV file) that is stored locally on disk and/or in a remote GCS bucket.
In DCBench, each artifact is identified by a unique artifact ID. The only state that the
Artifact
object must maintain is this ID (self.id
). The object does not hold the actual data in memory, making it lightweight.Artifact
is an abstract base class. Different types of artifacts (e.g. a CSV file vs. a PyTorch model) have corresponding subclasses ofArtifact
(e.g.CSVArtifact
,ModelArtifact
).Tip
The vast majority of users should not call the
Artifact
constructor directly. Instead, they should either create a new artifact by callingfrom_data()
or load an existing artifact from a YAML file.The class provides utilities for accessing and managing a unit of data:
Synchronizing the local and remote copies of a unit of data:
upload()
,download()
Loading the data into memory:
load()
Creating new artifacts from in-memory data:
from_data()
Serializing the pointer artifact so it can be shared:
to_yaml()
,from_yaml()
- Parameters
artifact_id (str) β The unique artifact ID.
- Return type
None
- idο
The unique artifact ID.
- Type
str
- classmethod from_data(data, artifact_id=None)[source]ο
Create a new artifact object from raw data and save the artifact to disk in the local directory specified in the config file at
config.local_dir
.Tip
When called on the abstract base class
Artifact
, this method will infer which artifact subclass to use. If you know exactly which artifact class youβd like to use (e.g.DataPanelArtifact
), you should call this classmethod on that subclass.- Parameters
data (Union[mk.DataPanel, pd.DataFrame, Model]) β The raw data that will be saved to disk.
artifact_id (str, optional) β . Defaults to None, in which case a UUID will be generated and used.
- Returns
A new artifact pointing to the :arg:`data` that was saved to disk.
- Return type
- property local_path: strο
The local path to the artifact in the local directory specified in the config file at
config.local_dir
.
- property remote_url: strο
The URL of the artifact in the remote GCS bucket specified in the config file at
config.public_bucket_name
.
- property is_downloaded: boolο
Checks if artifact is downloaded to local directory specified in the config file at
config.local_dir
.- Returns
True if artifact is downloaded, False otherwise.
- Return type
bool
- property is_uploaded: boolο
Checks if artifact is uploaded to GCS bucket specified in the config file at
config.public_bucket_name
.- Returns
True if artifact is uploaded, False otherwise.
- Return type
bool
- upload(force=False, bucket=None)[source]ο
Uploads artifact to a GCS bucket at
self.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force upload even if artifact is already uploaded. Defaults to False.
bucket (storage.Bucket, optional) β The GCS bucket to which the artifact is uplioaded. Defaults to None, in which case the artifact is uploaded to the bucket speciried in the config file at config.public_bucket_name.
- Return type
bool
- Returns
bool: True if artifact was uploaded, False otherwise.
- download(force=False)[source]ο
Downloads artifact from GCS bucket to the local directory specified in the config file at
config.local_dir
. The relative path to the artifact within that directory isself.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force download even if artifact is already downloaded. Defaults to False.
- Returns
True if artifact was downloaded, False otherwise.
- Return type
bool
Warning
By default, the GCS cache on public urls has a max-age up to an hour. Therefore, when updating an existin artifacts, changes may not be immediately reflected in subsequent downloads.
See here for more details.
- DEFAULT_EXT: str = ''ο
- isdir: bool = Falseο
- abstract load()[source]ο
Load the artifact into memory from disk at
self.local_path
.- Return type
Any
- abstract save(data)[source]ο
Save data to disk at
self.local_path
.- Parameters
data (Any) β
- Return type
None
- static from_yaml(loader, node)[source]ο
This function is called by the YAML loader to convert a YAML node into an Artifact object.
It should not be called directly.
- Parameters
loader (yaml.loader.Loader) β
- static to_yaml(dumper, data)[source]ο
This function is called by the YAML dumper to convert an Artifact object into a YAML node.
It should not be called directly.
- Parameters
dumper (yaml.dumper.Dumper) β
data (dcbench.common.artifact.Artifact) β
- class Problem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.artifact_container.ArtifactContainer
A logical collection of :class:`Artifact`s and βattributesβ that correspond to a specific problem to be solved.
See the walkthrough section on Problem for more information.
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- container_type: str = 'problem'ο
- name: strο
- summary: strο
- task_id: strο
- solution_class: typeο
- artifact_specs: Mapping[str, ArtifactSpec]ο
- class Solution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.artifact_container.ArtifactContainer
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- container_type: str = 'solution'ο
- artifact_specs: Mapping[str, ArtifactSpec]ο
- task_id: strο
- class Task(task_id, name, summary, problem_class, solution_class, baselines=Empty DataFrame Columns: [] Index: [])[source]ο
Bases:
dcbench.common.table.RowMixin
Task(task_id: str, name: str, summary: str, problem_class: type, solution_class: type, baselines: dcbench.common.table.Table = Empty DataFrame Columns: [] Index: [])
- Parameters
task_id (str) β
name (str) β
summary (str) β
problem_class (type) β
solution_class (type) β
baselines (dcbench.common.table.Table) β
- Return type
None
- task_id: strο
- name: strο
- summary: strο
- problem_class: typeο
- solution_class: typeο
- baselines: dcbench.common.table.Table = Empty DataFrame Columns: [] Index: []ο
- property problems_pathο
- property local_problems_pathο
- property remote_problems_urlο
- write_problems(containers, append=True)[source]ο
- Parameters
containers (List[dcbench.common.artifact_container.ArtifactContainer]) β
append (bool) β
- upload_problems(include_artifacts=False, force=True)[source]ο
Uploads the problems to the remote storage.
- Parameters
include_artifacts (bool) β If True, also uploads the artifacts of the problems.
force (bool) β
If True, if the problem overwrites the remote problems. Defaults to True. .. warning:
It is somewhat dangerous to set `force=False`, as this could lead to remote and local problems being out of sync.
- property problemsο
- attribute_specs: Mapping[str, AttributeSpec]ο
- class Table(data)[source]ο
Bases:
Mapping
[str
,dcbench.common.table.RowMixin
]- property dfο
- where(**kwargs)[source]ο
- Parameters
kwargs (Union[int, float, str, bool, slice, Sequence[Union[int, float, str, bool]]]) β
- Return type
- class Result(id, attributes=None)[source]ο
Bases:
dcbench.common.table.RowMixin
- Parameters
id (str) β
attributes (Mapping[str, Union[int, float, str, bool]]) β
- attribute_specs: Mapping[str, dcbench.common.table.AttributeSpec]ο
dcbench.tasks packageο
Subpackagesο
dcbench.tasks.budgetclean packageο
- random_clean(problem, seed=1337)[source]ο
- Parameters
problem (dcbench.tasks.budgetclean.problem.BudgetcleanProblem) β
seed (int) β
- Return type
- cp_clean(problem, seed=1337, n_jobs=8, kparam=3)[source]ο
- Parameters
problem (dcbench.tasks.budgetclean.problem.BudgetcleanProblem) β
seed (int) β
- Return type
- class BudgetcleanSolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'idx_selected': ArtifactSpec(description='', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False)}ο
- task_id: strο
- class BudgetcleanProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'X_test': ArtifactSpec(description=('Features of the test dataset used to produce the final evaluation score of the model.',), artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'X_train_clean': ArtifactSpec(description='Features of the clean training dataset where each dirty value from the dirty dataset is replaced with the correct clean candidate.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'X_train_dirty': ArtifactSpec(description=('Features of the dirty training dataset which we need to clean. Each dirty cell contains an embedded list of clean candidate values.',), artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'X_val': ArtifactSpec(description='Feature of the validtion dataset which can be used to guide the cleaning optimization process.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'y_test': ArtifactSpec(description='Labels of the test dataset.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'y_train': ArtifactSpec(description='Labels of the training dataset.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'y_val': ArtifactSpec(description='Labels of the validation dataset.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'budget': AttributeSpec(description='TODO', attribute_type=<class 'float'>, optional=False), 'dataset': AttributeSpec(description='TODO', attribute_type=<class 'str'>, optional=False), 'mode': AttributeSpec(description='TODO', attribute_type=<class 'str'>, optional=False), 'model': AttributeSpec(description='TODO', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'budgetclean'ο
- solve(idx_selected, **kwargs)[source]ο
- Parameters
idx_selected (Any) β
kwargs (Any) β
- Return type
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.tasks.budgetclean.problem.BudgetcleanSolution) β
- Return type
- name: strο
- summary: strο
- solution_class: typeο
dcbench.tasks.minidata packageο
- class MiniDataSolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'train_ids': ArtifactSpec(description='A list of train example ids from theΒ ``id`` column of ``train_data``.', artifact_type=<class 'dcbench.common.artifact.YAMLArtifact'>, optional=False)}ο
- task_id: str = 'minidata'ο
- class MiniDataProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'test_data': ArtifactSpec(description='A DataPanel of test examples with columns ``id``, ``input``, and ``target``.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'train_data': ArtifactSpec(description='A DataPanel of train examples with columns ``id``, ``input``, and ``target``.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'val_data': ArtifactSpec(description='A DataPanel of validation examples with columns ``id``, ``input``, and ``target``.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- task_id: str = 'minidata'ο
- solve(idx_selected, **kwargs)[source]ο
- Parameters
idx_selected (Any) β
kwargs (Any) β
- Return type
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.common.solution.Solution) β
- name: strο
- summary: strο
- solution_class: typeο
dcbench.tasks.slice_discovery packageο
- confusion_sdm(problem)[source]ο
A simple slice discovery method that returns a slice corresponding to each cell of the confusion matrix. For example, for a binary prediction task, this sdm will return 4 slices corresponding to true positives, false positives, true negatives and false negatives.
- Parameters
problem (SliceDiscoveryProblem) β The slice discovery problem.
- Returns
The predicted slices.
- Return type
- domino_sdm(problem)[source]ο
- Parameters
problem (dcbench.tasks.slice_discovery.problem.SliceDiscoveryProblem) β
- Return type
dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution
- precision_at_k(slice, pred_slice, k=25)[source]ο
- Parameters
slice (numpy.ndarray) β
pred_slice (numpy.ndarray) β
k (int) β
- class SliceDiscoverySolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'pred_slices': ArtifactSpec(description='A DataPanel of predicted slice labels with columns `id` and `pred_slices`.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'problem_id': AttributeSpec(description='A unique identifier for this problem.', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'slice_discovery'ο
- class SliceDiscoveryProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'activations': ArtifactSpec(description="A DataPanel of the model's activations with columns `id`,`act`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'base_dataset': ArtifactSpec(description='A DataPanel representing the base dataset with columns `id` and `image`.', artifact_type=<class 'dcbench.common.artifact.VisionDatasetArtifact'>, optional=False), 'clip': ArtifactSpec(description="A DataPanel of the image embeddings from OpenAI's CLIP model", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'model': ArtifactSpec(description='A trained PyTorch model to audit.', artifact_type=<class 'dcbench.common.artifact.ModelArtifact'>, optional=False), 'test_predictions': ArtifactSpec(description="A DataPanel of the model's predictions with columns `id`,`target`, and `probs.`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'test_slices': ArtifactSpec(description='A DataPanel of the ground truth slice labels with columnsΒ `id`, `slices`.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'val_predictions': ArtifactSpec(description="A DataPanel of the model's predictions with columns `id`,`target`, and `probs.`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'alpha': AttributeSpec(description='The alpha parameter for the AUC metric.', attribute_type=<class 'float'>, optional=False), 'dataset': AttributeSpec(description='The name of the dataset being audited.', attribute_type=<class 'str'>, optional=False), 'n_pred_slices': AttributeSpec(description='The number of slice predictions that each slice discovery method can return.', attribute_type=<class 'int'>, optional=False), 'slice_category': AttributeSpec(description='The type of slice .', attribute_type=<class 'str'>, optional=False), 'slice_names': AttributeSpec(description='The names of the slices in the dataset.', attribute_type=<class 'list'>, optional=False), 'target_name': AttributeSpec(description='The name of the target column in the dataset.', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'slice_discovery'ο
- solve(pred_slices_dp)[source]ο
- Parameters
pred_slices_dp (meerkat.datapanel.DataPanel) β
- Return type
dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution) β
- Return type
dict
- name: strο
- summary: strο
- solution_class: typeο
- confusion_sdm(problem)[source]ο
A simple slice discovery method that returns a slice corresponding to each cell of the confusion matrix. For example, for a binary prediction task, this sdm will return 4 slices corresponding to true positives, false positives, true negatives and false negatives.
- Parameters
problem (SliceDiscoveryProblem) β The slice discovery problem.
- Returns
The predicted slices.
- Return type
- domino_sdm(problem)[source]ο
- Parameters
problem (dcbench.tasks.slice_discovery.problem.SliceDiscoveryProblem) β
- Return type
dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution
- class SliceDiscoveryProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'activations': ArtifactSpec(description="A DataPanel of the model's activations with columns `id`,`act`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'base_dataset': ArtifactSpec(description='A DataPanel representing the base dataset with columns `id` and `image`.', artifact_type=<class 'dcbench.common.artifact.VisionDatasetArtifact'>, optional=False), 'clip': ArtifactSpec(description="A DataPanel of the image embeddings from OpenAI's CLIP model", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'model': ArtifactSpec(description='A trained PyTorch model to audit.', artifact_type=<class 'dcbench.common.artifact.ModelArtifact'>, optional=False), 'test_predictions': ArtifactSpec(description="A DataPanel of the model's predictions with columns `id`,`target`, and `probs.`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'test_slices': ArtifactSpec(description='A DataPanel of the ground truth slice labels with columnsΒ `id`, `slices`.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'val_predictions': ArtifactSpec(description="A DataPanel of the model's predictions with columns `id`,`target`, and `probs.`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'alpha': AttributeSpec(description='The alpha parameter for the AUC metric.', attribute_type=<class 'float'>, optional=False), 'dataset': AttributeSpec(description='The name of the dataset being audited.', attribute_type=<class 'str'>, optional=False), 'n_pred_slices': AttributeSpec(description='The number of slice predictions that each slice discovery method can return.', attribute_type=<class 'int'>, optional=False), 'slice_category': AttributeSpec(description='The type of slice .', attribute_type=<class 'str'>, optional=False), 'slice_names': AttributeSpec(description='The names of the slices in the dataset.', attribute_type=<class 'list'>, optional=False), 'target_name': AttributeSpec(description='The name of the target column in the dataset.', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'slice_discovery'ο
- solve(pred_slices_dp)[source]ο
- Parameters
pred_slices_dp (meerkat.datapanel.DataPanel) β
- Return type
dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution) β
- Return type
dict
- name: strο
- summary: strο
- solution_class: typeο
- class SliceDiscoverySolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'pred_slices': ArtifactSpec(description='A DataPanel of predicted slice labels with columns `id` and `pred_slices`.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'problem_id': AttributeSpec(description='A unique identifier for this problem.', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'slice_discovery'ο
Module contentsο
Submodulesο
dcbench.config moduleο
- class DCBenchConfig(local_dir: str = '/home/docs/.dcbench', public_bucket_name: str = 'dcbench', hidden_bucket_name: str = 'dcbench-hidden', celeba_dir: str = '/home/docs/.dcbench/datasets/celeba', imagenet_dir: str = '/home/docs/.dcbench/datasets/imagenet')[source]ο
Bases:
object
- Parameters
local_dir (str) β
public_bucket_name (str) β
hidden_bucket_name (str) β
celeba_dir (str) β
imagenet_dir (str) β
- Return type
None
- local_dir: str = '/home/docs/.dcbench'ο
- public_bucket_name: str = 'dcbench'ο
- property public_remote_urlο
- celeba_dir: str = '/home/docs/.dcbench/datasets/celeba'ο
- imagenet_dir: str = '/home/docs/.dcbench/datasets/imagenet'ο
dcbench.constants moduleο
dcbench.version moduleο
Module contentsο
The dcbench module is a collection for benchmarks that test various apsects of data preparation and handling in the context of AI workflows.
- class Artifact(artifact_id, **kwargs)[source]ο
Bases:
abc.ABC
A pointer to a unit of data (e.g. a CSV file) that is stored locally on disk and/or in a remote GCS bucket.
In DCBench, each artifact is identified by a unique artifact ID. The only state that the
Artifact
object must maintain is this ID (self.id
). The object does not hold the actual data in memory, making it lightweight.Artifact
is an abstract base class. Different types of artifacts (e.g. a CSV file vs. a PyTorch model) have corresponding subclasses ofArtifact
(e.g.CSVArtifact
,ModelArtifact
).Tip
The vast majority of users should not call the
Artifact
constructor directly. Instead, they should either create a new artifact by callingfrom_data()
or load an existing artifact from a YAML file.The class provides utilities for accessing and managing a unit of data:
Synchronizing the local and remote copies of a unit of data:
upload()
,download()
Loading the data into memory:
load()
Creating new artifacts from in-memory data:
from_data()
Serializing the pointer artifact so it can be shared:
to_yaml()
,from_yaml()
- Parameters
artifact_id (str) β The unique artifact ID.
- Return type
None
- idο
The unique artifact ID.
- Type
str
- classmethod from_data(data, artifact_id=None)[source]ο
Create a new artifact object from raw data and save the artifact to disk in the local directory specified in the config file at
config.local_dir
.Tip
When called on the abstract base class
Artifact
, this method will infer which artifact subclass to use. If you know exactly which artifact class youβd like to use (e.g.DataPanelArtifact
), you should call this classmethod on that subclass.- Parameters
data (Union[mk.DataPanel, pd.DataFrame, Model]) β The raw data that will be saved to disk.
artifact_id (str, optional) β . Defaults to None, in which case a UUID will be generated and used.
- Returns
A new artifact pointing to the :arg:`data` that was saved to disk.
- Return type
- property local_path: strο
The local path to the artifact in the local directory specified in the config file at
config.local_dir
.
- property remote_url: strο
The URL of the artifact in the remote GCS bucket specified in the config file at
config.public_bucket_name
.
- property is_downloaded: boolο
Checks if artifact is downloaded to local directory specified in the config file at
config.local_dir
.- Returns
True if artifact is downloaded, False otherwise.
- Return type
bool
- property is_uploaded: boolο
Checks if artifact is uploaded to GCS bucket specified in the config file at
config.public_bucket_name
.- Returns
True if artifact is uploaded, False otherwise.
- Return type
bool
- upload(force=False, bucket=None)[source]ο
Uploads artifact to a GCS bucket at
self.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force upload even if artifact is already uploaded. Defaults to False.
bucket (storage.Bucket, optional) β The GCS bucket to which the artifact is uplioaded. Defaults to None, in which case the artifact is uploaded to the bucket speciried in the config file at config.public_bucket_name.
- Return type
bool
- Returns
bool: True if artifact was uploaded, False otherwise.
- download(force=False)[source]ο
Downloads artifact from GCS bucket to the local directory specified in the config file at
config.local_dir
. The relative path to the artifact within that directory isself.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force download even if artifact is already downloaded. Defaults to False.
- Returns
True if artifact was downloaded, False otherwise.
- Return type
bool
Warning
By default, the GCS cache on public urls has a max-age up to an hour. Therefore, when updating an existin artifacts, changes may not be immediately reflected in subsequent downloads.
See here for more details.
- DEFAULT_EXT: str = ''ο
- isdir: bool = Falseο
- abstract load()[source]ο
Load the artifact into memory from disk at
self.local_path
.- Return type
Any
- abstract save(data)[source]ο
Save data to disk at
self.local_path
.- Parameters
data (Any) β
- Return type
None
- static from_yaml(loader, node)[source]ο
This function is called by the YAML loader to convert a YAML node into an Artifact object.
It should not be called directly.
- Parameters
loader (yaml.loader.Loader) β
- static to_yaml(dumper, data)[source]ο
This function is called by the YAML dumper to convert an Artifact object into a YAML node.
It should not be called directly.
- Parameters
dumper (yaml.dumper.Dumper) β
data (dcbench.common.artifact.Artifact) β
- class Problem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.artifact_container.ArtifactContainer
A logical collection of :class:`Artifact`s and βattributesβ that correspond to a specific problem to be solved.
See the walkthrough section on Problem for more information.
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- container_type: str = 'problem'ο
- name: strο
- summary: strο
- task_id: strο
- solution_class: typeο
- class Solution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.artifact_container.ArtifactContainer
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- container_type: str = 'solution'ο
- class BudgetcleanProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'X_test': ArtifactSpec(description=('Features of the test dataset used to produce the final evaluation score of the model.',), artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'X_train_clean': ArtifactSpec(description='Features of the clean training dataset where each dirty value from the dirty dataset is replaced with the correct clean candidate.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'X_train_dirty': ArtifactSpec(description=('Features of the dirty training dataset which we need to clean. Each dirty cell contains an embedded list of clean candidate values.',), artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'X_val': ArtifactSpec(description='Feature of the validtion dataset which can be used to guide the cleaning optimization process.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'y_test': ArtifactSpec(description='Labels of the test dataset.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'y_train': ArtifactSpec(description='Labels of the training dataset.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False), 'y_val': ArtifactSpec(description='Labels of the validation dataset.', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'budget': AttributeSpec(description='TODO', attribute_type=<class 'float'>, optional=False), 'dataset': AttributeSpec(description='TODO', attribute_type=<class 'str'>, optional=False), 'mode': AttributeSpec(description='TODO', attribute_type=<class 'str'>, optional=False), 'model': AttributeSpec(description='TODO', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'budgetclean'ο
- solve(idx_selected, **kwargs)[source]ο
- Parameters
idx_selected (Any) β
kwargs (Any) β
- Return type
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.tasks.budgetclean.problem.BudgetcleanSolution) β
- Return type
- class MiniDataProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'test_data': ArtifactSpec(description='A DataPanel of test examples with columns ``id``, ``input``, and ``target``.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'train_data': ArtifactSpec(description='A DataPanel of train examples with columns ``id``, ``input``, and ``target``.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'val_data': ArtifactSpec(description='A DataPanel of validation examples with columns ``id``, ``input``, and ``target``.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- task_id: str = 'minidata'ο
- solve(idx_selected, **kwargs)[source]ο
- Parameters
idx_selected (Any) β
kwargs (Any) β
- Return type
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.common.solution.Solution) β
- class SliceDiscoveryProblem(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.problem.Problem
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'activations': ArtifactSpec(description="A DataPanel of the model's activations with columns `id`,`act`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'base_dataset': ArtifactSpec(description='A DataPanel representing the base dataset with columns `id` and `image`.', artifact_type=<class 'dcbench.common.artifact.VisionDatasetArtifact'>, optional=False), 'clip': ArtifactSpec(description="A DataPanel of the image embeddings from OpenAI's CLIP model", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'model': ArtifactSpec(description='A trained PyTorch model to audit.', artifact_type=<class 'dcbench.common.artifact.ModelArtifact'>, optional=False), 'test_predictions': ArtifactSpec(description="A DataPanel of the model's predictions with columns `id`,`target`, and `probs.`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'test_slices': ArtifactSpec(description='A DataPanel of the ground truth slice labels with columnsΒ `id`, `slices`.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False), 'val_predictions': ArtifactSpec(description="A DataPanel of the model's predictions with columns `id`,`target`, and `probs.`", artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'alpha': AttributeSpec(description='The alpha parameter for the AUC metric.', attribute_type=<class 'float'>, optional=False), 'dataset': AttributeSpec(description='The name of the dataset being audited.', attribute_type=<class 'str'>, optional=False), 'n_pred_slices': AttributeSpec(description='The number of slice predictions that each slice discovery method can return.', attribute_type=<class 'int'>, optional=False), 'slice_category': AttributeSpec(description='The type of slice .', attribute_type=<class 'str'>, optional=False), 'slice_names': AttributeSpec(description='The names of the slices in the dataset.', attribute_type=<class 'list'>, optional=False), 'target_name': AttributeSpec(description='The name of the target column in the dataset.', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'slice_discovery'ο
- solve(pred_slices_dp)[source]ο
- Parameters
pred_slices_dp (meerkat.datapanel.DataPanel) β
- Return type
dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution
- evaluate(solution)[source]ο
- Parameters
solution (dcbench.tasks.slice_discovery.problem.SliceDiscoverySolution) β
- Return type
dict
- class BudgetcleanSolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'idx_selected': ArtifactSpec(description='', artifact_type=<class 'dcbench.common.artifact.CSVArtifact'>, optional=False)}ο
- class MiniDataSolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'train_ids': ArtifactSpec(description='A list of train example ids from theΒ ``id`` column of ``train_data``.', artifact_type=<class 'dcbench.common.artifact.YAMLArtifact'>, optional=False)}ο
- task_id: str = 'minidata'ο
- class SliceDiscoverySolution(artifacts, attributes=None, container_id=None)[source]ο
Bases:
dcbench.common.solution.Solution
- Parameters
artifacts (Mapping[str, Artifact]) β
attributes (Mapping[str, Attribute]) β
container_id (str) β
- artifact_specs: Mapping[str, dcbench.common.artifact_container.ArtifactSpec] = {'pred_slices': ArtifactSpec(description='A DataPanel of predicted slice labels with columns `id` and `pred_slices`.', artifact_type=<class 'dcbench.common.artifact.DataPanelArtifact'>, optional=False)}ο
- attribute_specs: Mapping[str, AttributeSpec] = {'problem_id': AttributeSpec(description='A unique identifier for this problem.', attribute_type=<class 'str'>, optional=False)}ο
- task_id: str = 'slice_discovery'ο
- class Task(task_id, name, summary, problem_class, solution_class, baselines=Empty DataFrame Columns: [] Index: [])[source]ο
Bases:
dcbench.common.table.RowMixin
Task(task_id: str, name: str, summary: str, problem_class: type, solution_class: type, baselines: dcbench.common.table.Table = Empty DataFrame Columns: [] Index: [])
- Parameters
task_id (str) β
name (str) β
summary (str) β
problem_class (type) β
solution_class (type) β
baselines (dcbench.common.table.Table) β
- Return type
None
- task_id: strο
- name: strο
- summary: strο
- problem_class: typeο
- solution_class: typeο
- baselines: dcbench.common.table.Table = Empty DataFrame Columns: [] Index: []ο
- property problems_pathο
- property local_problems_pathο
- property remote_problems_urlο
- write_problems(containers, append=True)[source]ο
- Parameters
containers (List[dcbench.common.artifact_container.ArtifactContainer]) β
append (bool) β
- upload_problems(include_artifacts=False, force=True)[source]ο
Uploads the problems to the remote storage.
- Parameters
include_artifacts (bool) β If True, also uploads the artifacts of the problems.
force (bool) β
If True, if the problem overwrites the remote problems. Defaults to True. .. warning:
It is somewhat dangerous to set `force=False`, as this could lead to remote and local problems being out of sync.
- property problemsο
- class ModelArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'pt'ο
- save(data)[source]ο
Save data to disk at
self.local_path
.- Parameters
data (dcbench.common.modeling.Model) β
- Return type
None
- class YAMLArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'yaml'ο
- class DataPanelArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.Artifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'mk'ο
- isdir: bool = Trueο
- class VisionDatasetArtifact(artifact_id, **kwargs)[source]ο
Bases:
dcbench.common.artifact.DataPanelArtifact
- Parameters
artifact_id (str) β
- Return type
None
- DEFAULT_EXT: str = 'mk'ο
- isdir: bool = Trueο
- COLUMN_SUBSETS = {'celeba': ['id', 'image', 'identity', 'split'], 'imagenet': ['id', 'image', 'name', 'synset']}ο
- download(force=False)[source]ο
Downloads artifact from GCS bucket to the local directory specified in the config file at
config.local_dir
. The relative path to the artifact within that directory isself.path
, which by default is just the artifact ID with the default extension.- Parameters
force (bool, optional) β Force download even if artifact is already downloaded. Defaults to False.
- Returns
True if artifact was downloaded, False otherwise.
- Return type
bool
Warning
By default, the GCS cache on public urls has a max-age up to an hour. Therefore, when updating an existin artifacts, changes may not be immediately reflected in subsequent downloads.
See here for more details.